Multialternative decision field theory: a dynamic connectionist model of decision making.

نویسندگان

  • R M Roe
  • J R Busemeyer
  • J T Townsend
چکیده

The authors interpret decision field theory (J. R. Busemeyer & J. T. Townsend, 1993) as a connectionist network and extend it to accommodate multialternative preferential choice situations. This article shows that the classic weighted additive utility model (see R. L. Keeney & H. Raiffa, 1976) and the classic Thurstone preferential choice model (see L. L. Thurstone, 1959) are special cases of this new multialternative decision field theory (MDFT), which also can emulate the search process of the popular elimination by aspects (EBA) model (see A. Tversky, 1969). The new theory is unique in its ability to explain several central empirical results found in the multialternative preference literature with a common set of principles. These empirical results include the similarity effect, the attraction effect, and the compromise effect, and the complex interactions among these three effects. The dynamic nature of the model also implies strong testable predictions concerning the moderating effect of time pressure on these three effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of dynamic decision making using connectionist networks

In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...

متن کامل

Rigorously testing multialternative decision field theory against random utility models.

Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental des...

متن کامل

A Connectionist Formulation of Learning in Dynamic Decision-Making Tasks

A formulation of learning in dynamic decision-making tasks is developed, building on the application of control theory to the study of human performance in dynamic decision making and a connectionist approach to motor control. The formulation is implemented as a connectionist model and compared with human subjects in learning a simulated dynamic decision-making task. When the model is pretraine...

متن کامل

A mathematical model for distinguishing bias from sensitivity effects in multialternative detection tasks

Studies investigating the neural bases of cognitive phenomena such as perception, attention and decisionmaking increasingly employ multialternative task designs. It is essential in such designs to distinguish the neural correlates of behavioral choices arising from changes in perceptual factors, such as enhanced sensitivity to sensory information, from those arising from changes in decisional f...

متن کامل

Ranking Efficient Decision Making Units Using Cooperative Game Theory Based on SBM Input-Oriented Model and Nucleolus Value

In evaluating the efficiency of decision making units (DMUs) by Data Envelopment Analysis (DEA) models, may be more than one DMU has an efficiency score equal to one. Since ranking of efficient DMUs is essential for decision makers, therefore, methods and models for this purpose are presented. One of ranking methods of efficient DMUs is cooperative game theory. In this study, Lee and Lozano mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Psychological review

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 2001